Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

rac- and meso-3, 3^{\prime}-Bis(3,5-dimethyl-phenyl)-3H, $\mathbf{3}^{\prime} \boldsymbol{H}-2,2^{\prime}$-biindenylidene$1, \mathbf{1}^{\prime}\left(\mathbf{2 H}, \mathbf{2}^{\prime} H\right)$-dione

Shigeru Ohba, ${ }^{\text {a }}$ Yohei Yamamoto ${ }^{\text {b }}$ and Koichi Tanaka ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and ${ }^{\mathbf{b}}$ Department of Applied Chemistry, Faculty of Engineering,
Ehime University, Matsuyama, Ehime 790-8577, Japan
Correspondence e-mail: ohba@flet.keio.ac.jp

Received 7 May 2003
Accepted 12 May 2003
Online 11 June 2003
In the rac isomer of the title compound, $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{2}$, the two $\mathrm{C}-\mathrm{Ph}_{\text {dimethylphenyl }}$ bond axes make an angle of $58.7(1)^{\circ}$. There is no short contact between the two 3,5-dimethylphenyl rings, although the dihedral angle between them is 4.93 (7) ${ }^{\circ}$. The meso isomer has a center of symmetry at the middle of the $\mathrm{C}=\mathrm{C}$ bond, and the two $\mathrm{C}-\mathrm{Ph}_{\text {dimethylphenyl }}$ bond axes are antiparallel to one another.

Comment

Organic photochromic compounds have received considerable attention in recent years because of their potential applications in many fields (Gemert, 1999). The title compounds, (I) and (II), respectively, were prepared during a study of crystal photochromism of $3,3^{\prime}$-diaryl-3H, $3^{\prime} H$-2, 2^{\prime}-biindenylidene-1, 1^{\prime} diones (Tanaka \& Toda, 2000; Tanaka et al., 2003). Compounds (I) and (II) are geometrical isomers, and they cannot be identified conclusively from spectroscopic data. The color of the crystals of both (I) and (II) changed from yellow to orange when they were irradiated with Hg light. This color

(I)

(II)
changed back to yellow after 30 min for (I) but has been stable for (II) for more than six months. Electron-spin resonance (ESR) spectra suggest that the photochromism of these crystals is due to the biradical caused by breaking the π-bond at

Figure 1
A view of the molecular structure of (I), with displacement ellipsoids shown at the 50% probability level.
the center of the biindenylidene moiety. In the present study, X-ray structure analyses of (I) and (II) have been carried out in order to investigate their molecular structures and $\pi-\pi$ interactions.

In (I), each indene system is approximately planar (Fig. 1). The dihedral angle between the C3/C4/C5 and C6-C11 planes is $3.12(5)^{\circ}$, and that between the $\mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 14$ and $\mathrm{C} 15-\mathrm{C} 20$ planes is $4.55(6)^{\circ}$. The two indene systems are skewed with respect to each other by 13.29 (4) ${ }^{\circ}$. The two 3,5-dimethylphenyl rings are almost parallel, and the dihedral angle between the C21-C26 and C29-C34 planes is $4.93(7)^{\circ}$. However, there is no intramolecular short contact between these rings. The shortest distance between the non-H atoms is 3.964 (4) \AA for $\mathrm{C} 27 \cdots \mathrm{C} 35$, and the second shortest distance is 3.986 (3) Å for C22 . . C30. Selected geometric parameters are given in Table 1.

Figure 2
A view of the molecular structure of (II), with displacement ellipsoids shown at the 50% probability level.

Figure 3
The crystal structure of (I), projected along a.
The meso isomer, (II), has a center of symmetry (Fig. 2). Each indene system is twisted slightly, and the dihedral angle between the C2/C3/C4 and C5-C10 planes is 11.31 (7) ${ }^{\circ}$. The puckering of the five-membered ring can also be seen from the $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles of the ring, which range from -9.1 (2) to 10.5 (2) ${ }^{\circ}$ (Table 2). Non-planarity of the fivemembered rings in the biindenylidene moiety was also observed in crystals of $2,2^{\prime}$-biindenylidene- $1,3,1^{\prime}, 3^{\prime}$-tetraone (Khodorkovsky et al., 1994), the torsion angles in the fivemembered rings ranging between -18.8 and 18.1°.

The densities of (I) and (II) indicate that the meso isomer has a slightly lower packing efficiency than the rac isomer. The more flexible space around the molecule might be preferable for photochromism. In crystals of (I), a pair of molecules related by a center of symmetry exhibit $\pi-\pi$ interactions between the rings of the biindenylidene moieties, with a

Figure 4

The crystal structure of (II), projected along b.
$\mathrm{C} 3 \cdots \mathrm{C} 3^{\mathrm{i}}$ distance of $3.479(4) \AA$, a $\mathrm{C} 8 \cdots \mathrm{C} 13^{\mathrm{i}}$ distance of 3.480 (3) \AA and a C9 . . C15 ${ }^{\text {i }}$ distance of 3.283 (3) \AA [symmetry code: (i) $-x,-y,-z$; Fig. 3]. In (II), $\pi-\pi$ stacking is observed between the terminal phenyl rings of the biindenylidene moieties, which leads to the formation of columns along c (Fig. 4), the shortest distance being 3.409 (3) \AA for C6..C8(1-x, $y, 2-z)$.

Experimental

Compounds (I) and (II) were synthesized according to the method reported by Tanaka \& Toda (2000). The isomers were separated by repeated recrystallization of the crude reaction products from dichloromethane solution. Crystals of (I) and (II) suitable for X-ray study were grown from dichloromethane solutions. For (I), m.p. 509515 K; IR: $1686(\mathrm{C}=\mathrm{O}), 1604(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; UV: $\lambda \mathrm{nm}^{-1}(\varepsilon) 241$ (9600), 302 (24000); ${ }^{1} \mathrm{H}$ NMR: $\delta 2.25\left(12 \mathrm{H}, s, \mathrm{CH}_{3}\right), 5.74(2 \mathrm{H}, s, \mathrm{CH})$, 6.83-7.76 (14H, m, Ph). For (II), m.p. 529-532 K; IR: 1685 (C=O), $1600(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{UV}: \lambda \mathrm{nm}^{-1}(\varepsilon) 241$ (9900), 294 (24200); ${ }^{1} \mathrm{H}$ NMR: $\delta 2.22\left(12 \mathrm{H}, s, \mathrm{CH}_{3}\right), 5.88(2 \mathrm{H}, s, \mathrm{CH}), 6.75-7.75(14 \mathrm{H}, m, \mathrm{Ph})$.

Compound (I)

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{2}$	$Z=2$
$M_{r}=468.59$	$D_{x}=1.239 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.392(2) \AA$	Cell parameters from 25
$b=13.9700(18) \AA$	reflections $c=9.2771(13) \AA$ $\alpha=97.705(11)^{\circ}$
$\beta=109.950(12)^{\circ}$	$\mu=0.4-14.4^{\circ}$
$\gamma=109.492(11)^{\circ}$	$T=298 \mathrm{~mm}^{-1}$
$V=1256.0(4) \AA^{\circ}$	Plate, yellow
Data collection	$0.50 \times 0.25 \times 0.10 \mathrm{~mm}$
Rigaku AFC- $7 R$ diffractometer	
$\omega-2 \theta$ scans	$h=-14 \rightarrow 14$
6275 measured reflections	$k=-18 \rightarrow 6$
5773 independent reflections	$l=-12 \rightarrow 12$
3911 reflections with $I>2 \sigma(I)$	3 standard reflections
$R_{\text {int }}=0.025$	every 150 reflections
θ	intensity decay: none

$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R(F)=0.050$
$w R\left(F^{2}\right)=0.154$
$S=1.03$
5773 reflections
325 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0736 P)^{2}\right.} \\
&+0.2455 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

O1-C3	$1.211(2)$	C5-C21	$1.526(2)$
O2-C12	$1.213(2)$	C12-C13	$1.509(3)$
C3-C4	$1.508(3)$	C12-C16	$1.470(2)$
C3-C7	$1.478(2)$	C13-C14	$1.521(2)$
C4-C5	$1.519(2)$	C14-C15	$1.523(3)$
C4-C13	$1.337(2)$	C14-C29	$1.520(3)$
C5-C6	$1.518(3)$		
C3-C4-C13-C12	$-166.8(2)$	C5-C4-C13-C14	$-173.6(2)$
C3-C4-C13-C14	$9.5(3)$	C3-C7-C6-C5	$4.3(2)$
C5-C4-C13-C12	$10.1(3)$	C4-C5-C6-C7	$-5.2(2)$

Compound (II)

Crystal data
$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{2}$
$M_{r}=468.59$
Monoclinic, $P 2_{1} / a$
$a=19.230$ (2) \AA
$b=8.0506$ (10) \AA
$c=8.4461$ (11) \AA
$\beta=98.802(10)^{\circ}$
$V=1292.2(3) \mathrm{A}^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.204 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=10.1-12.8^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Needle, yellow } \\
& 0.5 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC-7R diffractometer $\omega-2 \theta$ scans
3542 measured reflections
2969 independent reflections
1870 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R(F)=0.054$
$w R\left(F^{2}\right)=0.195$
$S=1.21$
2969 reflections
164 parameters
H -atom parameters constrained

Table 2
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II).

$\mathrm{O} 1-\mathrm{C} 2$	$1.222(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.523(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.508(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.527(3)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.467(3)$	$\mathrm{C} 4-\mathrm{C} 11$	$1.531(2)$
$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{ii}}$	$1.336(4)$		
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$10.5(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 6$	$-9.1(2)$

Symmetry code: (ii) $1-x,-y, 1-z$.

All H atoms were positioned geometrically and fixed, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\text {eq }}$ (parent atom). Some methyl H-atom positional parameters were modified further on the basis of difference density maps.

For both compounds, data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1639). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Gemert, B. V. (1999). Organic Photochromic and Thermochromic Compounds, edited by J. C. Crano \& R. J. Guglielmetti, pp. 1-371. New York: Plenum Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Khodorkovsky, V., Ellern, A. \& Neilands, O. (1994). Tetrahedron Lett. 35, 2955-2958.
Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tanaka, K. \& Toda, F. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 873-874.
Tanaka, K., Yamamoto, Y. \& Ohba, S. (2003). Chem. Commun. In the press.

